Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes

Yiguo Wang¹, Gang Li², Jason Goode¹, Jose C. Paz¹, Kunfu Ouyang³, Robert Screaton^{4,5,6}, Wolfgang H. Fischer¹, Ju Chen³, Ira Tabas^{2,7,8} & Marc Montminy¹

In the fasted state, increases in circulating glucagon promote hepatic glucose production through induction of the gluconeogenic program. Triggering of the cyclic AMP pathway increases gluconeogenic gene expression via the de-phosphorylation of the CREB co-activator CRTC2 (ref. 1). Glucagon promotes CRTC2 dephosphorylation in part through the protein kinase A (PKA)-mediated inhibition of the CRTC2 kinase SIK2. A number of Ser/Thr phosphatases seem to be capable of dephosphorylating CRTC2 (refs 2, 3), but the mechanisms by which hormonal cues regulate these enzymes remain unclear. Here we show in mice that glucagon stimulates CRTC2 dephosphorylation in hepatocytes by mobilizing intracellular calcium stores and activating the calcium/calmodulin-dependent Ser/Thr-phosphatase calcineurin (also known as PP3CA). Glucagon increased cytosolic calcium concentration through the PKA-mediated phosphorylation of inositol-1,4,5-trisphosphate receptors (InsP₃Rs), which associate with CRTC2. After their activation, InsP₃Rs enhanced gluconeogenic gene expression by promoting the calcineurinmediated dephosphorylation of CRTC2. During feeding, increases in insulin signalling reduced CRTC2 activity via the AKT-mediated inactivation of InsP₃Rs. InsP₃R activity was increased in diabetes, leading to upregulation of the gluconeogenic program. As hepatic downregulation of InsP₃Rs and calcineurin improved circulating glucose levels in insulin resistance, these results demonstrate how interactions between cAMP and calcium pathways at the level of the InsP₃R modulate hepatic glucose production under fasting conditions and in diabetes.

We tested a series of Ser/Thr protein phosphatase inhibitors for their ability to block CRTC2 activation in response to glucagon. Exposure to the calcineurin inhibitor cyclosporine A (CsA) disrupted the glucagon-induced dephosphorylation and nuclear translocation of CRTC2, but okadaic acid, an inhibitor of PP1, PP2A and PP4 did not (Fig. 1a and Supplementary Fig. 1a). CsA and other calcineurin inhibitors also reduced cAMP response element (CRE)-luciferase (Luc) reporter activity (Fig. 1a and Supplementary Fig. 1b), but they had no effect in cells expressing phosphorylation-defective (Ser 171, 275 Ala) and therefore active forms of CRTC2 (Supplementary Fig. 1c–e).

On the basis of the ability of CsA to interfere with CRTC2 activation, we considered that calcineurin may promote the dephosphorylation of CRTC2 in response to glucagon. Supporting this idea, CRTC2 contains two consensus (PXIXIT) motifs that mediate an association with calcineurin^{3,4} (Supplementary Fig. 2a, b). Moreover, mutation of both motifs disrupted the glucagon-dependent dephosphorylation of CRTC2 (Fig. 1b) and prevented its nuclear translocation (Supplementary Fig. 2c), thereby down-regulating CRE-Luc activation (Fig. 1b).

On the basis of these results, we tested whether calcineurin modulates expression of the gluconeogenic program. Adenoviral overexpression of the calcineurin catalytic subunit in hepatocytes augmented CRTC2 dephosphorylation, CRE-Luc activity, and glucose secretion in response to glucagon, whereas calcineurin knockdown had the opposite effect (Fig. 1c). Although calcineurin could, in principle, modulate CRTC2 activity indirectly through effects on cAMP signalling, calcineurin overexpression or knockdown did not alter the phosphorylation of cellular PKA substrates in cells exposed to glucagon (Supplementary Fig. 2d).

We examined next whether calcineurin modulates hepatic gluconeogenesis *in vivo*. Modest (twofold) overexpression of calcineurin in liver increased gluconeogenic gene expression, hepatic CRE-Luc activity, and fasting blood glucose concentrations (Fig. 1d and Supplementary Fig. 3a). Conversely, knockdown of hepatic calcineurin reduced expression of the gluconeogenic program and lowered circulating glucose levels (Fig. 1d and Supplementary Fig. 3b), demonstrating that this phosphatase contributes to fasting adaptation in the liver. Calcineurin seemed to stimulate gluconeogenesis via the CREB pathway; depletion of CRTC2 blocked the effects of calcineurin overexpression (Supplementary Fig. 4).

Realizing that calcineurin activity is dependent on increases in intracellular calcium, we tested whether the cAMP pathway stimulates calcium mobilization. Exposure of primary hepatocytes to glucagon triggered a rapid increase in cellular free calcium (Fig. 2a and Supplementary Fig. 5a); these effects were partially reversed by cotreatment with the PKA inhibitor H89 (Supplementary Fig. 5b). The rise in intracellular calcium seems to be critical for CRTC2 activation, because co-incubation with the calcium chelator BAPTA disrupted CRTC2 dephosphorylation and CRE-Luc activation in response to glucagon (Fig. 2b). Arguing against an effect of calcium on cAMP signalling, exposure to BAPTA did not block the PKA-mediated phosphorylation of CREB in response to glucagon.

We imagined that cAMP may increase calcium mobilization through the PKA-dependent phosphorylation of an intracellular calcium channel. In mass spectrometry studies to identify proteins that undergo phosphorylation by PKA in response to glucagon, we recovered the inositol 1,4,5-trisphosphate receptor 1 (InsP₃R1) from immunoprecipitates of phospho-PKA substrate antiserum (Supplementary Fig. 5c). InsP₃R1 and its related family members (InsP₃R2, InsP₃R3) are calcium release channels that promote the mobilization of endoplasmic reticulum calcium stores following their activation in response to extracellular signals⁵⁻⁹. Moreover, cAMP agonists have also been shown to enhance InsP₃R receptor activity through PKA-mediated phosphorylation.

Inhibiting InsP₃Rs, either by exposure of hepatocytes to xestospongin C or by knockdown of all three InsP₃Rs, disrupted cytosolic calcium mobilization and calcineurin activation in response to glucagon and forskolin (Fig. 2a and Supplementary Fig. 6a). Moreover, xestospongin C treatment and InsP₃R knockdown also blocked the effects of glucagon on CRTC2 dephosphorylation, CRE-Luc activation, and induction of the gluconeogenic program (Fig. 2c and Supplementary Fig. 6a, b). We

¹Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA. ²Department of Medicine, Columbia University, New York, New York, New York, 10032, USA. ³Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92037, USA. ⁴Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada. ⁵Department of Pediatrics, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada. ⁶Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA. ⁸Department of Pathology and Cell Biology, Columbia University, New York, New Yo

LETTER RESEARCH

CRTC2 90)⁼ Gcg-Acain GFR -M Gcg+ Ìţ activ 60 Gca -pS171 ----pS275 nc 30 CRTC2 CRE-I -Tubulin n GFP ACalna N CRTC2 CRE-Luc CRE-Luc GFF บร RNAi Caln Calna 1.2 3 mRNA level leve 08 GFP US RNAi mBNA 0.4 Calna RNAi Calna 0 0 Gebc PCK1 G^{6pc} PCK1 140 100 Blood glucose 120 Blood glucose 80 (i-lp 100 80 (mg dl⁻¹ 60 60 40 Calna 40 Calna GFP RNAi: S

Figure 1 | Calcineurin promotes CRTC2 activation during fasting. a, Effect of Ser/Thr phosphatase inhibitors (okadaic acid (OA), CsA) on CRTC2 dephosphorylation and CRE-Luc reporter activation (*P < 0.001; n = 3). Gcg, glucagon; Veh, vehicle. b, Effect of glucagon on dephosphorylation (left) and activity (right) of wild-type (WT) and calcineurin-defective (ACalna) CRTC2 in hepatocytes (*P < 0.001; n = 3). c, Effect of calcineurin A overexpression

а

(left) or knockdown (right) on CRTC2 dephosphorylation (top), CRE-Luc reporter activity (middle, *P < 0.001; n = 3), and glucose output (bottom, *P < 0.001; n = 3) from hepatocytes. US, unspecific. **d**, Effect of hepatic calcineurin overexpression (left) or knockdown (right) on CRE-Luc activity, gluconeogenic gene (Pck1, G6pc) expression, and blood glucose concentrations in 6–8 h fasted mice (*P < 0.01; n = 5). Data are shown as mean \pm s.e.m.

Figure 2 | Glucagon stimulates CRTC2 dephosphorylation via activation of InsP₃Rs. a, Effect of glucagon (Gcg) on calcium mobilization in hepatocytes by fluorescence imaging. Calcium mobilization and calcineurin activation following knockdown of all three InsP₃R family members shown (**P* < 0.001; *n* = 3). **b**, Effect of calcium chelator (BAPTA) on CRTC2 dephosphorylation and CRE-Luc activation (*P < 0.001; n = 3). **c**, Effect of InsP₃R depletion on CRTC2 dephosphorylation, CRE-Luc activity, and glucose output from hepatocytes (*P < 0.001; n = 3). d, Effect of hepatic InsP₃R knockdown on CRE-Luc activity, blood glucose, and gluconeogenic gene expression (*P < 0.01; n = 5). Data are shown as mean \pm s.e.m.

confirmed the effects of InsP₃R depletion using hepatocytes from mice with a knockout of the InsP₃R2 (ref. 10), the predominant InsP₃R isoform in these cells (Supplementary Fig. 6c-e).

On the basis of these results, InsP₃Rs would also be expected to modulate fasting glucose production in vivo. Decreasing hepatic InsP₃R expression, either by knockdown of all three InsP₃Rs in liver or by targeted disruption of the Insp3r2 gene, reduced fasting CRE-Luc activity, gluconeogenic gene expression, and circulating glucose concentrations, demonstrating the importance of these receptors in glucose homeostasis (Fig. 2d and Supplementary Fig. 7).

We tested whether glucagon modulates InsP₃R activity through PKA-mediated phosphorylation. Exposure of hepatocytes to glucagon increased the phosphorylation of InsP₃R1 as well as InsP₃R2 and InsP₃R3 by immunoblot assay with phospho-PKA substrate antiserum; these effects were blocked by the PKA inhibitor H89 (Fig. 3a and Supplementary Fig. 8a). Moreover, mutation of serine residues at consensus PKA sites in InsP₃R1 (Ser 1589, Ser 1756) to alanine completely disrupted InsP₃R1 phosphorylation in response to glucagon (Fig. 3b). As a result, overexpression of PKA-defective (S1589,1756A) InsP₃R1 interfered with calcium mobilization and calcineurin activation, and it reduced CRE-Luc activation and glucose secretion from hepatocytes exposed to glucagon (Fig. 3b-d).

Similar to glucagon, fasting also stimulated hepatic InsP₃R1 phosphorylation at Ser 1589 and Ser 1756 (Supplementary Fig. 8b). And overexpression of PKA-defective InsP₃R1 reduced fasting CRE-Luc induction, calcineurin activation, and gluconeogenic gene expression, leading to lower circulating glucose concentrations (Fig. 3e and Supplementary Fig. 8c, d). Taken together, these results support an important role for the PKA-mediated phosphorylation of InsP₃R in hepatic gluconeogenesis.

We considered that the proximity of CRTC2 to the calcium signalling machinery may be important for its activation. Supporting this

IP

IgG InsP₃R1

-+ -+

а

Gcg: H89:

notion, CRTC2 was found to associate with InsP₃R1 via its aminoterminal CREB binding domain (CBD) in co-immunoprecipitation assays (Fig. 3f and Supplementary Fig. 9a-d). Moreover, CRTC2 was enriched in endoplasmic reticulum containing high density microsomal fractions, which also contain the InsP₃Rs (Supplementary Fig. 9e). The InsP₃R-CRTC2 association seems to be critical for CRTC2 localization in the perinuclear space, because RNA interference (RNAi)-mediated knockdown of the InsP₃Rs led to redistribution of CRTC2 in the cytoplasm (Supplementary Fig. 9f). Disrupting the CRTC2-InsP₃R interaction, by deletion of the CBD in CRTC2 or by addition of an N-terminal myristoylation signal that targets CRTC2 to the plasma membrane, blocked CRTC2 dephosphorylation and CREreporter activation in response to glucagon (Supplementary Fig. 9g-i). Taken together, these results suggest that the association of CRTC2 with InsP₃Rs enhances its sensitivity to fasting signals.

Under feeding conditions, insulin inhibits gluconeogenesis in part by increasing CRTC2 phosphorylation. We wondered whether insulin interferes with InsP₃R effects on CRTC2 activitation. Supporting this idea, AKT has been shown to block calcium mobilization by phosphorylating InsP₃Rs at Ser 2682 (in InsP₃R1)¹¹. Indeed, exposure of hepatocytes to insulin increased InsP₃R phosphorylation by immunoblot analysis with phospho-AKT substrate antiserum (Supplementary Fig. 10a); mutation of Ser 2682 (in InsP₃R1) to alanine blocked these effects. Insulin treatment also reduced glucagon-dependent increases in calcium mobilization and calcineurin activation in cells expressing wild-type InsP₃R1, but it had no effect in cells expressing AKT-defective (S2682A) InsP₃R1 (Supplementary Fig. 10b). As a result, CRTC2 dephosphorylation, CRE-Luc activity, and glucose output were elevated in hepatocytes expressing InsP₃R(S2682A) compared to wild type (Supplementary Fig. 10c).

We examined whether InsP₃R1 phosphorylation by AKT is important in regulating hepatic glucose production in vivo. In line with this

400

300

200

100

ON

DCRTC2

CRTC2 InsP_oR1

CREB

Tubulir

InsP_oR1

Nr ON GK, InsP₃R1

(Mu

(c) and CRTC2 dephosphorylation (c), as well as CRE-Luc activation (d) and glucose output (d) from hepatocytes (*P < 0.001; n = 3). e, Effect of wild-type and PKA-defective InsP₃R1 on hepatic CRE-Luc activity, fasting blood glucose, and gluconeogenic gene expression (G6pc, Pck1) (*P < 0.01 versus wild type; n = 5). f, Co-immunoprecipitation of CRTC2 with InsP₃R1 in primary hepatocytes. Exposure to glucagon (100 nM, 15 min) indicated. Input levels of CRTC2 and InsP₃R1 in nuclear (Nu) and post-nuclear (p/Nu) supernatant fractions shown. Data are shown as mean \pm s.e.m.

b

Gcg

٩

nnut

d

f

CRE-Luc activity

Ġ,

60

40

20

0 GFP NY

Gca

InsP₂R²

Ś

Gcg-

Gcg+

51756A 1589A

ON

InsP_aR1

ON

pInsP₃R1

- (PKA) -InsP₃R1 -InsP₃R1

Tubulir

Glucose output

Gcq - + -

pCRTC2

InsP₂R1

Gcg-

Gcg

GFR M

Input

P/Nu Nu

Input

InsP R1

← pCREB

CREB

Tubulin

Gcg: + -

H89

pInsP_R1

- (PKÅ) - InsP₃R1

Figure 4 | InsP₃R activity is upregulated in diabetes. a, Hepatic CRE-Luc and calcineurin activity in lean and db/db mice (*P < 0.001; n = 5). b, Immunoblots showing relative amounts and phosphorylation of InsP₃R family members in livers of ad libitum fed lean, db/db, or ob/ob mice. InsP₃R

notion, feeding increased hepatic InsP₃R1 phosphorylation at Ser 2682 (Supplementary Fig. 8b). Moreover, overexpression of AKT-defective InsP₃R1 partially suppressed feeding-induced decreases in CRE-Luc activity and gluconeogenic gene expression, leading to elevations in circulating glucose concentrations (Supplementary Fig. 10d). Taken together, these results suggest that the AKT-mediated phosphorylation of InsP₃Rs during feeding inhibits hepatic gluconeogenesis by blocking the calcineurin-dependent dephosphorylation of CRTC2.

We wondered whether hepatic InsP₃R signalling contributes to increases in gluconeogenesis in the setting of insulin resistance. Supporting this notion, hepatic calcineurin activity was enhanced in both *ob/ob* and *db/db* diabetic animals, leading to increases in CRE-Luc activity (Fig. 4a and Supplementary Fig. 11a, b). Pointing to a role for InsP₃R, hepatic amounts of PKA-phosphorylated, active InsP₃Rs were increased in these diabetic mice, whereas amounts of AKT-phosphorylated, inactive InsP₃Rs were reduced (Fig. 4b). Correspondingly, knockdown of either calcineurin or InsP₃Rs in *db/db* mice reduced CRE-Luc activity, gluconeogenic gene expression, and hepatic gluconeogenesis (Fig. 4c and Supplementary Fig. 11c).

Collectively, our results demonstrate that glucagon promotes CRTC2 dephosphorylation during fasting by triggering increases in cytoplasmic calcium that lead to calcineurin activation (Supplementary Fig. 12). The ability for glucagon to increase calcium signalling via the PKA-mediated phosphorylation of InsP₃Rs demonstrates an important regulatory node for cross-talk between cAMP and calcium signalling pathways in liver and perhaps other insulin sensitive tissues. The partial inhibition of calcium entry by the PKA inhibitor H89 also points to additional regulatory inputs^{12,13} that may function with PKA to increase InsP₃R activity in response to glucagon. CRTC2 has also been found to stimulate metabolic gene expression by upregulating the nuclear hormone receptor co-activator PGC-1 α in liver^{14,15} and muscle¹⁶. On the basis of the well-recognized role of calcium signalling in PGC-1 α -dependent transcription, InsP₃Rs may also have an important function in this setting.

phosphorylation at PKA or AKT sites indicated. **c**, Effect of RNAi-mediated depletion of InsP₃Rs or calcineurin A on CRE-Luc activity, gluconeogenic gene expression, and hepatic glucose production in db/db mice, determined by pyruvate tolerance testing (*P < 0.01; n = 5). Data are shown as mean \pm s.e.m.

METHODS SUMMARY

Adenoviruses were delivered by tail vein injection¹⁷. Hepatic CRE-Luc activity was visualized using an IVIS Imaging system. Mice were imaged 3-5 days after injection of CRE-Luc adenovirus. Pyruvate tolerance testing was performed on mice fasted overnight and injected intraperitoneally with pyruvate (2 g kg⁻¹). *Insp3r2* knockout mice have been described¹⁰. Cultured primary mouse hepatocytes were prepared as reported¹⁸. Cellular fractionation studies were conducted using primary mouse hepatocytes¹⁸. Calcium imaging experiments were performed using a CCD camera on primary hepatocytes loaded with fura-2 dye. Mass spectrometry studies were performed on CRTC2 immunoprecipitates prepared from HEK293T cells and on immunoprecipitates of phospho-PKA substrate antiserum prepared from primary hepatocytes exposed to glucagon. Anti-InsP₃R1 (A302-158A) and InsP₃R3 (A302-160A) antibodies were purchased from Bethyl Laboratories, anti-InsP₃R2 (ab77838) antiserum was from Abcam, anti-calcineurin (610260) from BD Biosciences, anti-GRP78 (ADI-SPA-826-F) from Enzo Life Sciences, anti-phospho-PKA substrate (RRXS/T, 9624), anti-phospho-AKT substrate (RXXS/T, 9614) and CRTC2 (pS171, 2892) from Cell Signaling. Phospho (Ser 275) CRTC2 antibody was used as described¹⁹. For more details, see Supplementary Methods.

Full Methods and any associated references are available in the online version of the paper at www.nature.com/nature.

Received 26 July 2011; accepted 22 February 2012. Published online 8 April 2012.

- Altarejos, J. Y. & Montminy, M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. *Nature Rev. Mol. Cell Biol.* 12, 141–151 (2011).
- Yoon, Y. S. et al. Suppressor of MEK null (SMEK)/protein phosphatase 4 catalytic subunit (PP4C) is a key regulator of hepatic gluconeogenesis. Proc. Natl Acad. Sci. USA 107, 17704–17709 (2010).
- Screaton, R. A. et al. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119, 61–74 (2004).
- Hogan, P. G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003).
- Ferris, C. D., Huganir, R. L., Bredt, D. S., Cameron, A. M. & Snyder, S. H. Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin-dependent protein kinases in reconstituted lipid vesicles. *Proc. Natl Acad. Sci. USA* 88, 2232–2235 (1991).
- Volpe, P. & Alderson-Lang, B. H. Regulation of inositol 1,4,5-trisphosphate-induced Ca²⁺ release. II. Effect of cAMP-dependent protein kinase. *Am. J. Physiol.* 258, C1086–C1091 (1990).

- Bird, G. S., Burgess, G. M. & Putney, J. W. Jr. Sulfhydryl reagents and cAMPdependent kinase increase the sensitivity of the inositol 1,4,5-trisphosphate receptor in hepatocytes. J. Biol. Chem. 268, 17917–17923 (1993).
- Patterson, R. L., Boehning, D. & Snyder, S. H. Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu. Rev. Biochem. 73, 437–465 (2004).
- Futatsugi, A. et al. IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism. Science 309, 2232–2234 (2005).
- 10. Cruz, L. N. *et al.* Regulation of multidrug resistance-associated protein 2 by calcium signaling in mouse liver. *Hepatology* **52**, 327–337 (2010).
- Szado, T. *et al.* Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/AKT inhibits Ca²⁺ release and apoptosis. *Proc. Natl Acad. Sci. USA* 105, 2427–2432 (2008).
- Tovey, S. C. *et al.* Regulation of inositol 1,4,5-trisphosphate receptors by cAMP independent of cAMP-dependent protein kinase. *J. Biol. Chem.* 285, 12979–12989 (2010).
- Wakelam, M. J., Murphy, G. J., Hruby, V. J. & Houslay, M. D. Activation of two signaltransduction systems in hepatocytes by glucagon. *Nature* 323, 68–71 (1986).
- 14. Yoon, J. *et al.* Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. *Nature* **413**, 131–138 (2001).
- Herzig, S. et al. CREB regulates hepatic gluconeogenesis via the co-activator PGC-1. Nature 413, 179–183 (2001).
- Wu, Z. et al. Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1α transcription and mitochondrial biogenesis in muscle cells. Proc. Natl Acad. Sci. USA 103, 14379–14384 (2006).
- Dentin, R. et al. Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449, 366–369 (2007).

- Wang, Y., Vera, L., Fischer, W. H. & Montminy, M. The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. *Nature* 460, 534–537 (2009).
- Jansson, D. et al. Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2. Proc. Natl Acad. Sci. USA 105, 10161–10166 (2008).
- Liu, Y. et al. A fasting inducible switch modulates gluconeogenesis via activator/ coactivator exchange. Nature 456, 269–273 (2008).
- Wang, B. et al. A hormone-dependent module regulating energy balance. Cell 145, 596–606 (2011).

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements This work was supported by National Institutes of Health grants R01-DK049777, R01-DK083834 and R01-DK091618 (M.M.), HL087123 (I.T.), the Kieckhefer Foundation, The Clayton Foundation for Medical Research, and the Leona M. and Harry B. Helmsley Charitable Trust.

Author Contributions Y.W., I.T. and M.M. designed and interpreted the experiments. Y.W., G.L., J.C.P., R.S. and J.G. carried out the experimental work. Y.W., K.O. and J.C. characterized glucose metabolism in *Insp3r2* knockout mice. W.H.F. performed proteomic studies, and Y.W. and M.M. wrote the paper.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of this article at www.nature.com/nature. Correspondence and requests for materials should be addressed to M.M. (montminy@salk.edu).

METHODS

Mouse strains and adenovirus. Adenoviruses (1×10^8) plaque forming units (p.f.u.) GFP, calcineurin, InsP₃R1, InsP₃R1 DM (S1589A/S1756A), unspecific RNAi, calcineurin RNAi, Insp3r1 RNAi, Insp3r2 RNAi, Insp3r3 RNAi, Crtc2 RNAi, 1×10^9 p.f.u. CRE-Luc reporter, 5×10^7 p.f.u. RSV β -galactosidase) were delivered to 8–10-week-old male C57BL/6J, B6.V-lep < ob>/J, B6.Cg-m+/+Lepr < db > /J mice by tail vein injection¹⁷. Insp3r2 knockout mice were described previously¹⁰. All mice were adapted to their environment for 1 week before study and were housed in colony cages with a 12 h light/dark cycle in a temperaturecontrolled environment. For in vivo imaging experiments, mice were imaged on day 3-5 after adenovirus delivery. Wild-type CRTC2, CRTC2(S171A), GFP, unspecific RNAi, Crtc2 RNAi, CRE-Luc and RSV β-gal adenoviruses have been described previously^{17,20}. The adenoviruses containing rat InsP₃R1, InsP₃R1 DM and InsP₃R1(S2682A) were generated from the InsP₃R1 plasmid, provided by I. Bezprozvanny (UT Southwestern Medical Center at Dallas). Calcineurin adenovirus was constructed using a mouse calcineurin plasmid (Addgene). CRTC2 ∆CBD (51-692 amino acids), S275A and S171A/S275A adenoviruses were made from mouse CRTC2. Myristoylated CRTC2 (Myr-CRTC2) adenovirus was generated with mouse CRTC2 fused to an N-terminal myristoylation tag (MGSSKSKPKDPSQR) from Src. Calcineurin RNAi, Insp3r1 RNAi, Insp3r2 RNAi, Insp3r3 RNAi adenoviruses were constructed using the sequence 5'-GGGTACCGCATGTACAGGAAAA-3', 5'-GGGTACTGGAATAGCCTCT TCC-3', 5'-GGGTAACAAGCACCACCATCCC-3' and 5'-GGGCAAGCTGCA GGTGTTCCTG-3', respectively. All expressed constucts used in this study were confirmed by sequencing.

In vivo analysis. For in vivo imaging, mice were imaged as described^{17,20} under ad libitum feeding conditions or after fasting for 6 h. For pyruvate challenge experiments, mice were fasted overnight and injected intraperitoneally with pyruvate (2gkg⁻¹). Blood glucose values were determined using a LifeScan automatic glucometer. For immunoblot, mouse tissues were sonicated, centrifuged and supernatants were reserved for protein determinations, and SDS-PAGE analysis. In vitro analysis. HEK293T (ATCC) cells were cultured in DMEM containing 10% FBS (HyClone), 100 mg ml⁻¹ penicillin-streptomycin. Mouse primary hepatocytes were isolated and cultured as previously described¹⁸. Cellular fractionation studies were conducted as previously reported¹⁸. For reporter studies, Ad-CRE-Luc-infected hepatocytes (1 p.f.u. per cell) were exposed to glucagon (100 nM) for 2 to \sim 4 h. For CsA (10 μ M), okadaic acid (100 nM), cell permeable calcineurin autoinhibitory peptide (10 µM), CN585 (100 µM), calyculin A (10 nM), xestospongin C (2 µM), H89 (30 µM) or BAPTA (50 µM) inhibition, hepatocytes were pre-treated with the inhibitors for 1 h. Luciferase activities were normalized to β-galactosidase activity from adenoviral-encoded RSV β-galactosidase. Calcineurin activity (test kit from Enzo Life Sciences) and cellular cAMP levels (test kit from Cayman Chemical Company) were measured according to the manufacturer's instructions.

Calcium imaging. Mouse primary hepatocytes were plated on glass coverslips and loaded with 5 μ M Fura-2 acetoxymethyl ester (Molecular Probes) in the presence of 0.025% (w/v) pluronic F127 (Sigma-Aldrich) in Media 199 (Mediatech) for 30 min. Coverslips were mounted on a laminar flow perfusion chamber (Warner Instruments) and perfused with Media 199 or a solution of 100 nM glucagon in Media 199. Images of Fura-2 loaded cells were collected with a cooled CCD camera while the excitation wavelength was alternated between 340 nm and 380 nm. The ratio of fluorescence intensity at the two excitation wavelengths was calculated after subtracting background fluorescence. $[Ca^{2+}]i$ (cytosolic free calcium concentration) was calculated using a Fura-2 calcium imaging calibration kit (Invitrogen). Images were collected and analysed using the MetaFluor software package (Universal Imaging Corp.). Graphs represent average responses from groups of 30–40 individual cells from representative single experiments. Bar graphs represent average responses (fold over average baseline) from 150–200 cells per condition. All experiments were repeated at least three times with similar results.

Immunoblot, immunoprecipitation and immunostaining. Immunoblot, immunoprecipitation and immunostaining assays were performed as described¹⁸. CRTC2, pCREB (Ser 133), CREB, pAKT (Thr 308), AKT, tubulin, HA and Flag antibodies were previously described¹⁸. The antibodies anti-InsP₃R1 (A302–158A) and InsP₃R3 (A302–160A) were purchased from Bethyl Laboratories, anti-InsP₃R2 (ab77838) from Abcam, anti-calcineurin (610260) from BD Biosciences, anti-GRP78 (ADI-SPA-826-F) from Enzo Life Sciences, anti-phospho-PKA substrate (RRXS/T, 9624), anti-phospho-AKT substrate (RXXS/T, 9614) and CRTC2 (pS171, 2892) from Cell Signaling. CRTC2 (pS275) antibody was used as described¹⁹.

Quantitative PCR. Total cellular RNAs from whole liver or from primary hepatocytes were extracted using the RNeasy kit (Qiagen) and used to generate cDNA with SuperScript II enzyme (Invitrogen). cDNA were analysed by quantitative PCR as described¹⁸.

Mass spectrometry. Immunoprecipitates of endogenous CRTC2 from HEK293T cells and of phospho-PKA substrate antiserum from glucagon-stimulated hepatocytes were prepared for mass spectrometric studies as previously reported²¹, and analysed by electrospray ionization tandem mass spectrometry on a Thermo LTQ Orbitrap instrument.

Statistical analyses. All studies were performed on at least three independent occasions. Results are reported as mean \pm s.e.m. The comparison of different groups was carried out using two-tailed unpaired Student's *t*-test. Differences were considered statistically significant at *P* < 0.05.